Transfer function model - MATLAB (2024)

Table of Contents
Description Creation Syntax Description Input Arguments numerator — Numerator coefficients of the transfer functionrow vector | Ny-by-Nu cell array of row vectors denominator — Denominator coefficients of the transfer function row vector | Ny-by-Nu cell array of row vectors ts — Sample time scalar ltiSys — Dynamic system dynamic system model | model array m — Static gain scalar | matrix component — Component of identified model 'measured' (default) | 'noise' | 'augmented' Output Arguments sys — Output system modeltf model object | genss model object | uss model object Properties Numerator — Numerator coefficients row vector | Ny-by-Nu cell array of row vectors Denominator — Denominator coefficients row vector | Ny-by-Nu cell array of row vectors Variable — Transfer function display variable 's' (default) | 'z' | 'p' | 'q' | 'z^-1' | 'q^-1' IODelay — Transport delay 0 (default) | scalar | Ny-by-Nu array InputDelay — Input delay 0 (default) | scalar | Nu-by-1 vector OutputDelay — Output delay 0 (default) | scalar | Ny-by-1 vector Ts — Sample time 0 (default) | positive scalar | -1 TimeUnit — Time variable units 'seconds' (default) | 'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' | 'hours' | 'days' | 'weeks' | 'months' | 'years' | ... InputName — Input channel names '' (default) | character vector | cell array of character vectors InputUnit — Input channel units '' (default) | character vector | cell array of character vectors InputGroup — Input channel groups structure OutputName — Output channel names '' (default) | character vector | cell array of character vectors OutputUnit — Output channel units '' (default) | character vector | cell array of character vectors OutputGroup — Output channel groups structure Name — System name '' (default) | character vector Notes — User-specified text {} (default) | character vector | cell array of character vectors UserData — User-specified data [] (default) | any MATLAB® data type SamplingGrid — Sampling grid for model arrays structure array Object Functions Linear Analysis Stability Analysis Model Transformation Model Interconnection Controller Design Examples SISO Transfer Function Model Discrete-Time SISO Transfer Function Model Second-Order Transfer Function from Damping Ratio and Natural Frequency Discrete-Time MIMO Transfer Function Model Concatenate SISO Transfer Functions into MIMO Transfer Function Model Transfer Function Model Using Rational Expression Discrete-Time Transfer Function Model Using Rational Expression Transfer Function Model with Inherited Properties Array of Transfer Function Models Convert State-Space Model to Transfer Function Extract Transfer Functions from Identified Model Specify Input and Output Names for MIMO Transfer Function Model Specify Polynomial Ordering in Discrete-Time Transfer Function Tunable Low-Pass Filter Static Gain MIMO Transfer Function Model Limitations Version History See Also Topics External Websites MATLAB Command Americas Europe Asia Pacific FAQs

Transfer function model

expand all in page

Description

Use tf to create real-valued or complex-valued transfer function models, or to convert dynamic system models to transfer function form.

Transfer functions are a frequency-domain representation of linear time-invariant systems. For instance, consider a continuous-time SISO dynamic system represented by the transfer function sys(s) = N(s)/D(s), where s = jw and N(s) and D(s) are called the numerator and denominator polynomials, respectively. The tf model object can represent SISO or MIMO transfer functions in continuous time or discrete time.

You can create a transfer function model object either by specifying its coefficients directly, or by converting a model of another type (such as a state-space model ss) to transfer-function form. For more information, see Transfer Functions.

You can also use tf to create generalized state-space (genss) models or uncertain state-space (uss (Robust Control Toolbox)) models.

Creation

Syntax

sys = tf(numerator,denominator)

sys = tf(numerator,denominator,ts)

sys = tf(numerator,denominator,ltiSys)

sys = tf(m)

sys = tf(___,Name,Value)

sys = tf(ltiSys)

sys = tf(ltiSys,component)

s = tf('s')

z = tf('z',ts)

Description

example

sys = tf(numerator,denominator) creates a continuous-time transfer function model, setting the Numerator and Denominator properties. For instance, consider a continuous-time SISO dynamic system represented by the transfer function sys(s) = N(s)/D(s), the input arguments numerator and denominator are the coefficients of N(s) and D(s), respectively.

example

sys = tf(numerator,denominator,ts) creates a discrete-time transfer function model, setting the Numerator, Denominator, and Ts properties. For instance, consider a discrete-time SISO dynamic system represented by the transfer function sys(z) = N(z)/D(z), the input arguments numerator and denominator are the coefficients of N(z) and D(z), respectively. To leave the sample time unspecified, set ts input argument to -1.

example

sys = tf(numerator,denominator,ltiSys) creates a transfer function model with properties inherited from the dynamic system model ltiSys, including the sample time.

example

sys = tf(m) creates a transfer function model that represents the static gain, m.

example

sys = tf(___,Name,Value) sets properties of the transfer function model using one or more Name,Value pair arguments for any of the previous input-argument combinations.

example

sys = tf(ltiSys) converts the dynamic system model ltiSys to a transfer function model.

example

sys = tf(ltiSys,component) converts the specified component of ltiSys to transfer function form. Use this syntax only when ltiSys is an identified linear time-invariant (LTI) model.

example

s = tf('s') creates special variable s that you can use in a rational expression to create a continuous-time transfer function model. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients.

example

z = tf('z',ts) creates special variable z that you can use in a rational expression to create a discrete-time transfer function model. To leave the sample time unspecified, set ts input argument to -1.

Input Arguments

expand all

Numerator coefficients of the transfer function, specified as:

  • A row vector of polynomial coefficients.

  • An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs, and Nu is the number of inputs.

When you create the transfer function, specify the numerator coefficients in order of descending power. For instance, if the transfer function numerator is 3s^2-4s+5, then specify numerator as [3 -4 5]. For a discrete-time transfer function with numerator 2z-1, set numerator to [2 -1].

Also a property of the tf object. For more information, see Numerator.

Denominator coefficients, specified as:

  • A row vector of polynomial coefficients.

  • An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs.

When you create the transfer function, specify the denominator coefficients in order of descending power. For instance, if the transfer function denominator is 7s^2+8s-9, then specify denominator as [7 8 -9]. For a discrete-time transfer function with denominator 2z^2+1, set denominator to [2 0 1].

Also a property of the tf object. For more information, see Denominator.

Sample time, specified as a scalar. Also a property of the tf object. For more information, see Ts.

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

  • Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.

  • Generalized or uncertain LTI models such as genss or uss (Robust Control Toolbox) models. (Using uncertain models requires Robust Control Toolbox™ software.)

    The resulting transfer function assumes

    • current values of the tunable components for tunable control design blocks.

    • nominal model values for uncertain control design blocks.

  • Identified LTI models, such as idtf (System Identification Toolbox), idss (System Identification Toolbox), idproc (System Identification Toolbox), idpoly (System Identification Toolbox), and idgrey (System Identification Toolbox) models. To select the component of the identified model to convert, specify component. If you do not specify component, tf converts the measured component of the identified model by default. (Using identified models requires System Identification Toolbox™ software.)

Static gain, specified as a scalar or matrix. Static gain or steady state gain of a system represents the ratio of the output to the input under steady state condition.

Component of identified model to convert, specified as one of the following:

  • 'measured' — Convert the measured component of sys.

  • 'noise' — Convert the noise component of sys

  • 'augmented' — Convert both the measured and noise components of sys.

component only applies when sys is an identified LTI model.

For more information on identified LTI models and their measured and noise components, see Identified LTI Models.

Output Arguments

expand all

Output system model, returned as:

  • A transfer function (tf) model object, when numerator and denominator input arguments are numeric arrays.

  • A generalized state-space model (genss) object, when the numerator or denominator input arguments includes tunable parameters, such as realp parameters or generalized matrices (genmat). For an example, see Tunable Low-Pass Filter.

  • An uncertain state-space model (uss) object, when the numerator or denominator input arguments includes uncertain parameters. Using uncertain models requires Robust Control Toolbox software. For an example, see Transfer Function with Uncertain Coefficients (Robust Control Toolbox).

Properties

expand all

Numerator coefficients, specified as:

  • A row vector of polynomial coefficients in order of descending power (for Variable values 's', 'z', 'p', or 'q') or in order of ascending power (for Variable values 'z^-1' or 'q^-1').

  • An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the numerator coefficients for a given input/output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

The coefficients of Numerator can be either real-valued or complex-valued.

Denominator coefficients, specified as:

  • A row vector of polynomial coefficients in order of descending power (for values Variable values 's', 'z', 'p', or 'q') or in order of ascending power (for Variable values 'z^-1' or 'q^-1').

  • An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the numerator coefficients for a given input/ output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

If all SISO entries of a MIMO transfer function have the same denominator, you can specify Denominator as the row vector while specifying Numerator as a cell array.

The coefficients of Denominator can be either real-valued or complex-valued.

Transfer function display variable, specified as one of the following:

  • 's' — Default for continuous-time models

  • 'z' — Default for discrete-time models

  • 'p' — Equivalent to 's'

  • 'q' — Equivalent to 'z'

  • 'z^-1' — Inverse of 'z'

  • 'q^-1' — Equivalent to 'z^-1'

The value of Variable is reflected in the display, and also affects the interpretation of the Numerator and Denominator coefficient vectors for discrete-time models.

  • For Variable values 's', 'z', 'p', or 'q', the coefficients are ordered in descending powers of the variable. For example, consider the row vector [ak ... a1 a0]. The polynomial order is specified as akzk+...+a1z+a0.

  • For Variable values 'z^-1' or 'q^-1', the coefficients are ordered in ascending powers of the variable. For example, consider the row vector [b0 b1 ... bk]. The polynomial order is specified as b0+b1z1+...+bkzk.

For examples, see Specify Polynomial Ordering in Discrete-Time Transfer Function, Transfer Function Model Using Rational Expression, and Discrete-Time Transfer Function Model Using Rational Expression.

Transport delay, specified as one of the following:

  • Scalar — Specify the transport delay for a SISO system or the same transport delay for all input/output pairs of a MIMO system.

  • Ny-by-Nu array — Specify separate transport delays for each input/output pair of a MIMO system. Here, Ny is the number of outputs and Nu is the number of inputs.

For continuous-time systems, specify transport delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sample time, Ts.

Input delay for each input channel, specified as one of the following:

  • Scalar — Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.

  • Nu-by-1 vector — Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see Time Delays in Linear Systems.

Output delay for each output channel, specified as one of the following:

  • Scalar — Specify the output delay for a SISO system or the same delay for all outputs of a multi-output system.

  • Ny-by-1 vector — Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see Time Delays in Linear Systems.

Sample time, specified as:

  • 0 for continuous-time systems.

  • A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.

  • -1 for a discrete-time system with an unspecified sample time.

Note

Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

Time variable units, specified as one of the following:

  • 'nanoseconds'

  • 'microseconds'

  • 'milliseconds'

  • 'seconds'

  • 'minutes'

  • 'hours'

  • 'days'

  • 'weeks'

  • 'months'

  • 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Input channel names, specified as one of the following:

  • A character vector, for single-input models.

  • A cell array of character vectors, for multi-input models.

  • '', no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion. For example, if sys is a two-input model, enter the following:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is equivalent to sys.InputName.

Use InputName to:

  • Identify channels on model display and plots.

  • Extract subsystems of MIMO systems.

  • Specify connection points when interconnecting models.

Input channel units, specified as one of the following:

  • A character vector, for single-input models.

  • A cell array of character vectors, for multi-input models.

  • '', no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5, respectively.

sys.InputGroup.controls = [1 2];sys.InputGroup.noise = [3 5];

You can then extract the subsystem from the controls inputs to all outputs using the following.

sys(:,'controls')

By default, InputGroup is a structure with no fields.

Output channel names, specified as one of the following:

  • A character vector, for single-output models.

  • A cell array of character vectors, for multi-output models.

  • '', no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

  • Identify channels on model display and plots.

  • Extract subsystems of MIMO systems.

  • Specify connection points when interconnecting models.

Output channel units, specified as one of the following:

  • A character vector, for single-output models.

  • A cell array of character vectors, for multi-output models.

  • '', no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1, and 3 and 5, respectively.

sys.OutputGroup.temperature = [1];sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following.

sys('measurement',:)

By default, OutputGroup is a structure with no fields.

System name, specified as a character vector. For example, 'system_1'.

User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

User-specified data that you want to associate with the system, specified as any MATLAB data type.

Sampling grid for model arrays, specified as a structure array.

Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times t = 0:10. The following code stores the time samples with the linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w. The following code maps the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w values.

M
M(:,:,1,1) [zeta=0.3, w=5] = 25 -------------- s^2 + 3 s + 25 M(:,:,2,1) [zeta=0.35, w=5] = 25 ---------------- s^2 + 3.5 s + 25 ...

For model arrays generated by linearizing a Simulink® model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design™ commands linearize (Simulink Control Design) and slLinearizer (Simulink Control Design) populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

Object Functions

The following lists contain a representative subset of the functions you can use with tf models. In general, any function applicable to Dynamic System Models is applicable to a tf object.

expand all

stepStep response of dynamic system
impulseImpulse response plot of dynamic system; impulse response data
lsimPlot simulated time response of dynamic system to arbitrary inputs; simulated response data
bodeBode plot of frequency response, or magnitude and phasedata
nyquistNyquist plot of frequency response
nicholsNichols chart of frequency response
bandwidthFrequency response bandwidth
polePoles of dynamic system
zeroZeros and gain of SISO dynamic system
pzplotPole-zero plot of dynamic system model with additional plot customization options
marginGain margin, phase margin, and crossover frequencies
zpkZero-pole-gain model
ssState-space model
c2dConvert model from continuous to discrete time
d2cConvert model from discrete to continuous time
d2dResample discrete-timemodel
feedbackFeedback connection of multiple models
connectBlock diagram interconnections of dynamic systems
seriesSeries connection of two models
parallelParallel connection of two models
pidtunePID tuning algorithm for linear plant model
rlocusRoot locus plot of dynamic system
lqrLinear-Quadratic Regulator (LQR) design
lqgLinear-Quadratic-Gaussian (LQG) design
lqiLinear-Quadratic-Integral control
kalmanDesign Kalman filter for state estimation

Examples

collapse all

SISO Transfer Function Model

Open Live Script

For this example, consider the following SISO transfer function model:

sys(s)=12s2+3s+4.

Specify the numerator and denominator coefficients ordered in descending powers of s, and create the transfer function model.

numerator = 1;denominator = [2,3,4];sys = tf(numerator,denominator)
sys = 1 --------------- 2 s^2 + 3 s + 4 Continuous-time transfer function.

Discrete-Time SISO Transfer Function Model

Open Live Script

For this example, consider the following discrete-time SISO transfer function model:

sys(z)=2z4z3+3z-1.

Specify the numerator and denominator coefficients ordered in descending powers of z and the sample time of 0.1 seconds. Create the discrete-time transfer function model.

numerator = [2,0];denominator = [4,0,3,-1];ts = 0.1;sys = tf(numerator,denominator,ts)
sys = 2 z --------------- 4 z^3 + 3 z - 1 Sample time: 0.1 secondsDiscrete-time transfer function.

Second-Order Transfer Function from Damping Ratio and Natural Frequency

Open Live Script

For this example, consider a transfer function model that represents a second-order system with known natural frequency and damping ratio.

The transfer function of a second-order system, expressed in terms of its damping ratio ζ and natural frequency ω0, is:

sys(s)=ω02s2+2ζω0s+ω02.

Assuming a damping ratio, ζ = 0.25 and natural frequency, ω0 = 3 rad/s, create the second order transfer function.

zeta = 0.25;w0 = 3;numerator = w0^2;denominator = [1,2*zeta*w0,w0^2];sys = tf(numerator,denominator)
sys = 9 --------------- s^2 + 1.5 s + 9 Continuous-time transfer function.

Examine the response of this transfer function to a step input.

stepplot(sys)

Transfer function model - MATLAB (1)

The plot shows the ringdown expected of a second-order system with a low damping ratio.

Discrete-Time MIMO Transfer Function Model

Open Live Script

Create a transfer function for the discrete-time, multi-input, multi-output model:

sys(z)=[1z+0.3zz+0.3-z+2z+0.33z+0.3]

with sample time ts = 0.2 seconds.

Specify the numerator coefficients as a 2-by-2 matrix.

numerators = {1 [1 0];[-1 2] 3};

Specify the coefficients of the common denominator as a row vector.

denominator = [1 0.3];

Create the discrete-time MIMO transfer function model.

ts = 0.2;sys = tf(numerators,denominator,ts)
sys = From input 1 to output... 1 1: ------- z + 0.3 -z + 2 2: ------- z + 0.3 From input 2 to output... z 1: ------- z + 0.3 3 2: ------- z + 0.3 Sample time: 0.2 secondsDiscrete-time transfer function.

For more information on creating MIMO transfer functions, see MIMO Transfer Functions.

Concatenate SISO Transfer Functions into MIMO Transfer Function Model

Open Live Script

In this example, you create a MIMO transfer function model by concatenating SISO transfer function models. Consider the following single-input, two-output transfer function:

sys(s)=[s-1s+1s+2s2+4s+5].

Specify the MIMO transfer function model by concatenating the SISO entries.

sys1 = tf([1 -1],[1 1]);sys2 = tf([1 2],[1 4 5]);sys = [sys1;sys2]
sys = From input to output... s - 1 1: ----- s + 1 s + 2 2: ------------- s^2 + 4 s + 5 Continuous-time transfer function.

For more information on creating MIMO transfer functions, see MIMO Transfer Functions.

Transfer Function Model Using Rational Expression

Open Live Script

For this example, create a continuous-time transfer function model using rational expressions. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients of the numerator and denominator.

Consider the following system:

sys(s)=ss2+2s+10.

To create the transfer function model, first specify s as a tf object.

s = tf('s')
s = s Continuous-time transfer function.

Create the transfer function model using s in the rational expression.

sys = s/(s^2 + 2*s + 10)
sys = s -------------- s^2 + 2 s + 10 Continuous-time transfer function.

Discrete-Time Transfer Function Model Using Rational Expression

Open Live Script

For this example, create a discrete-time transfer function model using a rational expression. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients.

Consider the following system:

sys(z)=z-1z2-1.85z+0.9.Discrete-time transfer function

To create the transfer function model, first specify z as a tf object and the sample time Ts.

ts = 0.1;z = tf('z',ts)
z = z Sample time: 0.1 secondsDiscrete-time transfer function.

Create the transfer function model using z in the rational expression.

sys = (z - 1) / (z^2 - 1.85*z + 0.9)
sys = z - 1 ------------------ z^2 - 1.85 z + 0.9 Sample time: 0.1 secondsDiscrete-time transfer function.

Transfer Function Model with Inherited Properties

Open Live Script

For this example, create a transfer function model with properties inherited from another transfer function model. Consider the following two transfer functions:

sys1(s)=2ss2+8sandsys2(s)=s-17s4+2s3+9.

For this example, create sys1 with the TimeUnit and InputDelay property set to 'minutes'.

numerator1 = [2,0];denominator1 = [1,8,0];sys1 = tf(numerator1,denominator1,'TimeUnit','minutes','InputUnit','minutes')
sys1 = 2 s --------- s^2 + 8 s Continuous-time transfer function.
propValues1 = [sys1.TimeUnit,sys1.InputUnit]
propValues1 = 1x2 cell {'minutes'} {'minutes'}

Create the second transfer function model with properties inherited from sys1.

numerator2 = [1,-1];denominator2 = [7,2,0,0,9];sys2 = tf(numerator2,denominator2,sys1)
sys2 = s - 1 ----------------- 7 s^4 + 2 s^3 + 9 Continuous-time transfer function.
propValues2 = [sys2.TimeUnit,sys2.InputUnit]
propValues2 = 1x2 cell {'minutes'} {'minutes'}

Observe that the transfer function model sys2 has that same properties as sys1.

Array of Transfer Function Models

Open Live Script

You can use a for loop to specify an array of transfer function models.

First, pre-allocate the transfer function array with zeros.

sys = tf(zeros(1,1,3));

The first two indices represent the number of outputs and inputs for the models, while the third index is the number of models in the array.

Create the transfer function model array using a rational expression in the for loop.

s = tf('s'); for k = 1:3 sys(:,:,k) = k/(s^2+s+k); endsys
sys(:,:,1,1) = 1 ----------- s^2 + s + 1 sys(:,:,2,1) = 2 ----------- s^2 + s + 2 sys(:,:,3,1) = 3 ----------- s^2 + s + 3 3x1 array of continuous-time transfer functions.

Convert State-Space Model to Transfer Function

Open Live Script

For this example, compute the transfer function of the following state-space model:

A=[-2-11-2],B=[112-1],C=[10],D=[01].

Create the state-space model using the state-space matrices.

A = [-2 -1;1 -2];B = [1 1;2 -1];C = [1 0];D = [0 1];ltiSys = ss(A,B,C,D);

Convert the state-space model ltiSys to a transfer function.

sys = tf(ltiSys)
sys = From input 1 to output: s ------------- s^2 + 4 s + 5 From input 2 to output: s^2 + 5 s + 8 ------------- s^2 + 4 s + 5 Continuous-time transfer function.

Extract Transfer Functions from Identified Model

This example uses:

  • Control System ToolboxControl System Toolbox
  • System Identification ToolboxSystem Identification Toolbox

Open Live Script

For this example, extract the measured and noise components of an identified polynomial model into two separate transfer functions.

Load the Box-Jenkins polynomial model ltiSys in identifiedModel.mat.

load('identifiedModel.mat','ltiSys');

ltiSys is an identified discrete-time model of the form: y(t)=BFu(t)+CDe(t), where BF represents the measured component and CD the noise component.

Extract the measured and noise components as transfer functions.

sysMeas = tf(ltiSys,'measured') 
sysMeas = From input "u1" to output "y1": -0.1426 z^-1 + 0.1958 z^-2 z^(-2) * ---------------------------- 1 - 1.575 z^-1 + 0.6115 z^-2 Sample time: 0.04 secondsDiscrete-time transfer function.
sysNoise = tf(ltiSys,'noise')
sysNoise = From input "v@y1" to output "y1": 0.04556 + 0.03301 z^-1 ---------------------------------------- 1 - 1.026 z^-1 + 0.26 z^-2 - 0.1949 z^-3 Input groups: Name Channels Noise 1 Sample time: 0.04 secondsDiscrete-time transfer function.

The measured component can serve as a plant model, while the noise component can be used as a disturbance model for control system design.

Specify Input and Output Names for MIMO Transfer Function Model

Open Live Script

Transfer function model objects include model data that helps you keep track of what the model represents. For instance, you can assign names to the inputs and outputs of your model.

Consider the following continuous-time MIMO transfer function model:

sys(s)=[s+1s2+2s+21s]

The model has one input - Current, and two outputs - Torque and Angular velocity.

First, specify the numerator and denominator coefficients of the model.

numerators = {[1 1] ; 1};denominators = {[1 2 2] ; [1 0]};

Create the transfer function model, specifying the input name and output names.

sys = tf(numerators,denominators,'InputName','Current',... 'OutputName',{'Torque' 'Angular Velocity'})
sys = From input "Current" to output... s + 1 Torque: ------------- s^2 + 2 s + 2 1 Angular Velocity: - s Continuous-time transfer function.

Specify Polynomial Ordering in Discrete-Time Transfer Function

Open Live Script

For this example, specify polynomial ordering in discrete-time transfer function models using the 'Variable' property.

Consider the following discrete-time transfer functions with sample time 0.1 seconds:

sys1(z)=z2z2+2z+3sys2(z-1)=11+2z-1+3z-2.

Create the first discrete-time transfer function by specifying the z coefficients.

numerator = [1,0,0];denominator = [1,2,3];ts = 0.1;sys1 = tf(numerator,denominator,ts)
sys1 = z^2 ------------- z^2 + 2 z + 3 Sample time: 0.1 secondsDiscrete-time transfer function.

The coefficients of sys1 are ordered in descending powers of z.

tf switches convention based on the value of the 'Variable' property. Since sys2 is the inverse transfer function model of sys1, specify 'Variable' as 'z^-1' and use the same numerator and denominator coefficients.

sys2 = tf(numerator,denominator,ts,'Variable','z^-1')
sys2 = 1 ------------------- 1 + 2 z^-1 + 3 z^-2 Sample time: 0.1 secondsDiscrete-time transfer function.

The coefficients of sys2 are now ordered in ascending powers of z^-1.

Based on different conventions, you can specify polynomial ordering in transfer function models using the 'Variable' property.

Tunable Low-Pass Filter

Open Live Script

In this example, you will create a low-pass filter with one tunable parameter a:

F=as+a

Since the numerator and denominator coefficients of a tunableTF block are independent, you cannot use tunableTF to represent F. Instead, construct F using the tunable real parameter object realp.

Create a real tunable parameter with an initial value of 10.

a = realp('a',10)
a = Name: 'a' Value: 10 Minimum: -Inf Maximum: Inf Free: 1Real scalar parameter.

Use tf to create the tunable low-pass filter F.

numerator = a;denominator = [1,a];F = tf(numerator,denominator)
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, and the following blocks: a: Scalar parameter, 2 occurrences.Type "ss(F)" to see the current value and "F.Blocks" to interact with the blocks.

F is a genss object which has the tunable parameter a in its Blocks property. You can connect F with other tunable or numeric models to create more complex control system models. For an example, see Control System with Tunable Components.

Static Gain MIMO Transfer Function Model

Open Live Script

In this example, you will create a static gain MIMO transfer function model.

Consider the following two-input, two-output static gain matrix m:

m=[2435]

Specify the gain matrix and create the static gain transfer function model.

m = [2,4;... 3,5];sys1 = tf(m)
sys1 = From input 1 to output... 1: 2 2: 3 From input 2 to output... 1: 4 2: 5 Static gain.

You can use static gain transfer function model sys1 obtained above to cascade it with another transfer function model.

For this example, create another two-input, two-output discrete transfer function model and use the series function to connect the two models.

numerators = {1,[1,0];[-1,2],3};denominator = [1,0.3];ts = 0.2;sys2 = tf(numerators,denominator,ts)
sys2 = From input 1 to output... 1 1: ------- z + 0.3 -z + 2 2: ------- z + 0.3 From input 2 to output... z 1: ------- z + 0.3 3 2: ------- z + 0.3 Sample time: 0.2 secondsDiscrete-time transfer function.
sys = series(sys1,sys2)
sys = From input 1 to output... 3 z^2 + 2.9 z + 0.6 1: ------------------- z^2 + 0.6 z + 0.09 -2 z^2 + 12.4 z + 3.9 2: --------------------- z^2 + 0.6 z + 0.09 From input 2 to output... 5 z^2 + 5.5 z + 1.2 1: ------------------- z^2 + 0.6 z + 0.09 -4 z^2 + 21.8 z + 6.9 2: --------------------- z^2 + 0.6 z + 0.09 Sample time: 0.2 secondsDiscrete-time transfer function.

Limitations

  • Transfer function models are ill-suited for numerical computations. Once created, convert them to state-space form before combining them with other models or performing model transformations. You can then convert the resulting models back to transfer function form for inspection purposes

  • An identified nonlinear model cannot be directly converted into a transfer function model using tf. To obtain a transfer function model:

    1. Convert the nonlinear identified model to an identified LTI model using linapp (System Identification Toolbox), idnlarx/linearize (System Identification Toolbox), or idnlhw/linearize (System Identification Toolbox).

    2. Then, convert the resulting model to a transfer function model using tf.

Version History

Introduced before R2006a

See Also

filt | frd | get | set | ss | tfdata | zpk | genss | realp | genmat | tunableTF

Topics

  • What Are Model Objects?
  • Transfer Functions
  • Discrete-Time Numeric Models
  • MIMO Transfer Functions
  • Using the Right Model Representation
  • Using FEEDBACK to Close Feedback Loops

External Websites

  • Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

MATLAB Command

You clicked a link that corresponds to this MATLAB command:

 

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Transfer function model - MATLAB (2)

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
  • 日本 (日本語)
  • 한국 (한국어)

Contact your local office

Transfer function model - MATLAB (2024)

FAQs

How to model transfer functions in matlab? ›

When you create the transfer function, specify the numerator coefficients in order of descending power. For instance, if the transfer function numerator is 3s^2-4s+5 , then specify numerator as [3 -4 5] . For a discrete-time transfer function with numerator 2z-1 , set numerator to [2 -1] .

What is a transfer function model? ›

A transfer function is a compact way of representing the relationship between the input into a system, and its output. It's a mathematical model that captures the linear time invariant dynamics of a system.

Why is tf not working in MATLAB? ›

It appears that the Control System Toolbox is not installed. The 'tf' function from the Control System Toolbox is necessary to represent linear dynamical systems in transfer function form. This likely explains why it returns the error message 'Incorrect number or types of inputs or outputs for function tf'.

How to create a transfer function? ›

For the first-order linear system, the transfer function is created by isolating terms with Y(s) on the left side of the equation and the term with U(s) on the right side of the equation. Factoring out the Y(s) and dividing through gives the final transfer function.

When should I use tf function? ›

You can use tf. function to make graphs out of your programs. It is a transformation tool that creates Python-independent dataflow graphs out of your Python code. This will help you create performant and portable models, and it is required to use SavedModel .

What is the formula for the transfer function? ›

A transfer function H(f) of a system with input (reference) x and output (response) y is written as the ratio H(f)=Y(f)/X(f), where X(f) is the Fourier transform of x and Y(f) is the Fourier transform of y.

How to convert state-space to transfer function in MATLAB? ›

[ b , a ] = ss2tf( A , B , C , D ) converts a state-space representation of a system into an equivalent transfer function. ss2tf returns the Laplace-transform transfer function for continuous-time systems and the Z-transform transfer function for discrete-time systems.

What is a real example of a transfer function? ›

The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a ...

Why do we use a transfer function? ›

A transfer function is a convenient way to represent a linear, time-invariant system in terms of its input-output relationship. It is obtained by applying a Laplace transform to the differential equations describing system dynamics, assuming zero initial conditions.

What is a transfer model? ›

Transfer learning models focus on storing knowledge gained while solving one problem and applying it to a different but related problem. Instead of training a neural network from scratch, many pre-trained models can serve as the starting point for training.

What is Simulink used for in Matlab? ›

Simulink is the platform for Model-Based Design that supports system-level design, simulation, automatic code generation, and continuous test and verification of embedded systems. Key capabilities include: A graphical editor for modeling all components of a system.

How to convert transfer function into state space model? ›

We start by multiplying by Z(s)/Z(s) and then solving for Y(s) and U(s) in terms of Z(s). We also convert back to a differential equation. From these results we can easily form the state space model: In this case, the order of the numerator of the transfer function was less than that of the denominator.

How to do modelling in MATLAB? ›

From the MATLAB toolstrip, click Simulink . Click the Blank Model template. The Simulink Editor opens. To avoid shadowing, the Simulink Editor checks loaded models and files on the path and creates a model with the next available name untitled , untitled1 , untitled2 , and so on.

How to convert to str MATLAB? ›

str = string( X ) converts the input X to a string. Use this operator in the Requirements Table block.

How to use lsim in MATLAB? ›

To use lsim , you specify u as a matrix with dimensions Nt -by- Nu , where Nu is the number of system inputs and Nt is the length of t . In other words, each column of u is the input signal applied to the corresponding system input.

Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 5667

Rating: 4.3 / 5 (54 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.